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Abstract 

Structured peer-to-peer overlay networks provide a sub- 
strate for the construction of large-scale, decentralized 
applications, including distributed storage, group com- 
munication, and content distribution. These overlays are 
highly resilient; they can route messages correctly even 
when a large fraction of the nodes crash or the network 
partitions. But current overlays are not secure; even a 
small fraction of malicious nodes can prevent correct 
message delivery throughout the overlay. This prob- 
lem is particularly serious in open peer-to-peer systems, 
where many diverse, autonomous parties without pre- 
existing trust relationships wish to pool their resources. 
This paper studies attacks aimed at preventing correct 
message delivery in structured peer-to-peer overlays and 
presents defenses to these attacks. We describe and eval- 
uate techniques that allow nodes to join the overlay, to 
maintain routing state, and to forward messages securely 
in the presence of malicious nodes. 

1 Introduction 

Structured peer-to-peer (p2p) overlays like CAN [16], 
Chord [20], Pastry [17] and Tapestry [21] provide a 
self-organizing substrate for large-scale peer-to-peer ap- 
plications. These systems provide a powerful platform 
for the construction of a variety of decentralized ser- 
vices, including network storage, content distribution, 
and application-level multicast. Structured overlays al- 
low applications to locate any object in a probabilisti- 
cally bounded, small number of network hops, while re- 
quiring per-node routing tables with only a small num- 
ber of entries. Moreover, the systems are scalable, fault- 
tolerant and provide effective load balancing. 

However, to fully realize the potential of the p2p 
paradigm, such overlay networks must be able to support 
an open environment where mutually distrusting parties 
with conflicting interests are allowed to join. Even in a 
closed system of sufficiently large scale, it may be un- 
realistic to assume that none of the participating nodes 
have been compromised by attackers. Thus, structured 

overlays must be robust to a variety of security attacks, 
including the case where a fraction of the participating 
nodes act maliciously. Such nodes may mis-route, cor- 
rupt, or drop messages and routing information. Addi- 
tionally, they may attempt to assume the identity of other 
nodes and corrupt or delete objects they are supposed to 
store on behalf of the system. 

In this paper, we consider security issues in structured 
p2p overlay networks. We describe attacks that can be 
mounted against such overlays and the applications they 
support, and present the design of  secure techniques that 
can thwart such attacks. In particular, we identify se- 
cure muting as a key building block that can be combined 
with existing, application-specific security techniques to 
construct secure, decentralized applications upon struc- 
tured overlays. Secure routing requires (1) a secure as- 
signment of node identifiers, (2) secure routing table 
maintenance, and (3) secure message forwarding. We 
present techniques for each of these problems, and show 
how using these techniques, secure routing can be main- 
tained efficiently despite up to 25% of malicious partic- 
ipating nodes. Moreover, we show that the overhead of 
secure routing is acceptable and proportional to the frac- 
tion of malicious nodes. 

The rest of this paper is organized as follows. Section 2 
gives some background on structured p2p overlays, spec- 
ifies models and assumptions, and defines secure routing. 
Sections 3, 4 and 5 present attacks on and solutions for 
assignment of identifiers to nodes, routing table mainte- 
nance and message forwarding, respectively. Section 6 
explains how the overhead of secure routing can be min- 
imized by using self-certifying data. Finally, Section 7 
discusses related work and Section 8 provides conclu- 
sions. 

2 Background, models and solution 

In this section, we present some background on struc- 
tured p2p overlay protocols like CAN, Chord, Tapestry 
and Pastry. Space limitations prevent us from giving a 
detailed overview of each protocol. Instead, we describe 
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an abstract model of structured p2p overlay networks that 
we use to keep the discussion independent of any particu- 
lar protocol. For concreteness, we also give an overview 
of Pastry and point out relevant differences with the other 
protocols. Next, we describe models and assumptions 
used later in the paper about how faulty nodes may be- 
have. Finally, we define secure routing and outline our 
solution. 

Throughout this paper, most of the analyses and tech- 
niques are presented in terms of our abstract model, and 
should apply to other structured overlays except when 
otherwise noted. However, the security and performance 
of our techniques was fully evaluated only in the con- 
text of  Pastry; a full evaluation of the techniques in other 
protocols is future work. 

2.1 Routing overlay model 

We define an abstract model of a structured p2p routing 
overlay, designed to capture the key concepts common to 
overlays like CAN, Chord, Tapestry and Pastry. 

In our model, participating nodes are assigned uni- 
form random identifiers, nodelds, from a large id space 
(e.g., the set of 128-bit unsigned integers). Application- 
specific objects are assigned unique identifiers, called 
keys, selected from the same id space. Each key is 
mapped by the overlay to a unique live node, called the 
key's root. The protocol routes messages with a given 
key to its associated root. 

To route messages efficiently, each node maintains a 
routing table with nodeIds of other nodes and their as- 
sociated IP addresses. Moreover, each node maintains a 
neighbor set, consisting of some number of nodes with 
nodeIds near the current node in the id space. Since 
nodeId assignment is random, any neighbor set repre- 
sents a random sample of  all participating nodes. 

For fault tolerance, application objects are stored at more 
than one node in the overlay. A replica function maps an 
object's key to a set of replica keys, such that the set of 
replica roots associated with the replica keys represents 
a random sample of participating nodes in the overlay. 
Each replica root stores a copy of the object. 

Next, we discuss existing structured p2p overlay proto- 
cols and how they relate to our abstract model. 

2.2 Pastry 

Pastry nodeIds are assigned randomly with uniform dis- 
tribution from a circular 128-bit id space. Given a 128- 
bit key, Pastry routes an associated message toward the 
live node whose nodeld is numerically closest to the key. 
Each Pastry node keeps track of its neighbor set and no- 
titles applications of changes in the set. 

Node state: For the purpose of routing, nodelds and 
keys are thought of as a sequence of digits in base 2 b 

(b is a configuration parameter with typical value 4). A 
node's routing table is organized into 128/2 b rows and 20 
columns. The 2 b entries in row r of the routing table con- 
tain the IP addresses of nodes whose nodeIds share the 
first r digits with the present node's nodeId; the r +  lth 
nodeId digit of the node in column c of row r equals c. 
The column in row r that corresponds to the value of the 
r + lth digit of the local node's nodeId remains empty. 
A routing table entry is left empty if no node with the 
appropriate nodeId prefix is known. Figure 1 depicts an 
example routing table. 

Each node also maintains a neighbor set (called a "leaf 
set"). The leaf set is the set of l nodes with nodeIds 
that are numerically closest to the present node's nodeld, 
with I/2 larger and l/2 smaller nodeIds than the cur- 
rent node's id. The value of l is constant for all nodes 
in the overlay, with a typical value of approximately 
F8 • log2bN ] , where N is the number of expected nodes 
in the overlay. The leaf set ensures reliable message de- 
livery and is used to store replicas of  application objects. 

Message routing: At each routing step, a node seeks to 
forward the message to a node in the routing table whose 
nodeId shares with the key a prefix that is at least one 
digit (or b bits) longer than the prefix that the key shares 
with the present node's id. If  no such node can be found, 
the message is forwarded to a node whose nodeId shares 
a prefix with the key as long as the current node, but is 
numerically closer to the key than the present node's id. 
If  no appropriate node exists in either the routing table 
or neighbor set, then the current node or its immediate 
neighbor is the message's final destination. 

Figure 2 shows the path of  an example message. Anal- 
ysis shows that the expected number of routing hops is 
slightly below log2bN, with a distribution that is tight 
around the mean. Moreover, simulation shows that the 
routing is highly resilient to crash failures. 

To achieve self-organization, Pastry nodes must dynami- 
cally maintain their node state, i.e., the routing table and 
neighbor set, in the presence of node arrivals and node 
failures. A newly arriving node with the new nodeId X 
can initialize its state by asking any existing Pastry node 
A to route a special message using X as the key. The 
message is routed to the existing node Z with nodeld nu- 
merically closest to X. X then obtains the neighbor set 
from Z and constructs its routing table by copying rows 
from the routing tables of the nodes it encountered on the 
original route from A to Z. Finally, X announces its pres- 
ence to the initial members of  its neighbor set, which in 
turn update their own neighbor sets and routing tables. 
Similarly, the overlay can adapt to abrupt node failure 
by exchanging a small number of messages (O(log2bN)) 
among a small number of nodes. 
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Figure 1: Routing table of a Pastry node with 
nodeld 65alx, b = 4. Digits are in base 16, x 
represents an arbitrary suffix. 
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Figure 2: Routing a message from node 
65a l fc  with key d46a lc. The dots depict live 
nodes in Pastry's circular namespace. 

2.3 CAN,  Chord ,  Tapes t ry  

Next, we briefly describe CAN, Chord and Tapestry, with 
an emphasis on the differences relative to Pastry. 

Tapestry is very similar to Pastry but differs in its ap- 
proach to mapping keys to nodes and in how it manages 
replication. In Tapestry, neighboring nodes in the names- 
pace are not aware of each other. When a node's rout- 
ing table does not have an entry for a node that matches 
a key's nth digit, the message is forwarded to the node 
with the next higher value in the nth digit, modulo 2 b, 
found in the routing table. This procedure, called surro- 
gate routing, maps keys to a unique live node if the node 
routing tables are consistent. Tapestry does not have a 
direct analog to a neighbor set, although one can think of 
the lowest populated level of the Tapestry routing table 
as a neighbor set. For fault tolerance, Tapestry's replica 
function produces a set of random keys, yielding a set 
of replica roots at random points in the id space. The 
expected number of routing hops in Tapestry is logzbN. 

Chord uses a 160-bit circular id space. Unlike Pastry, 
Chord forwards messages only in clockwise direction in 
the circular id space. Instead of the prefix-based routing 
table in Pastry, Chord nodes maintain a routing table con- 
sisting of up to 160 pointers to other live nodes (called a 
"finger table"). The ith entry in the finger table of node n 
refers to the live node with the smallest nodeld clockwise 
from n + 2 i-I . The first entry points to n's successor, and 
subsequent entries refer to nodes at repeatedly doubling 
distances from n. Each node in Chord also maintains 
pointers to its predecessor and to its n successors in the 
nodeld space (this successor list represents the neighbor 
set in our model). Like Pastry, Chord's replica function 
maps an object's key to the nodelds in the neighbor set 
of the key's root, i.e., replicas are stored in the neighbor 
set of the key's root for fault tolerance. The expected 

number of routing hops in Chord is llogeN. 

CAN routes messages in a d-dimensional space, where 
each node maintains a routing table with O(d) entries 
and any node can be reached in (d/4)(N 1/d) routing hops 
on average. The entries in a node's routing table refer to 
its neighbors in the d-dimensional space. CAN's neigh- 
bor table duals as both the routing table and the neighbor 
set in our model. Like Tapestry, CAN's replica function 
produces random keys for storing replicas at diverse lo- 
cations. Unlike Pastry, Tapestry and Chord, CAN's rout- 
ing table does not grow with the network size, but the 
number of routing hops grows faster than logN in this 
case. 

Tapestry and Pastry construct their overlay in a Internet 
topology-aware manner to reduce routing delays and net- 
work utilization. In these protocols, routing table entries 
can be chosen arbitrarily from an entire segment of the 
nodeId space without increasing the expected number of 
routing hops. The protocols exploit this by initializing 
the routing table to refer to nodes that are nearby in the 
network topology and have the appropriate nodeId pre- 
fix. This greatly facilitates proximity routing [17]. How- 
ever, it also makes these systems vulnerable to certain 
attacks, as shown in Section 4. 

The choice of entries in CAN's and Chord's routing ta- 
bles is tightly constrained. The CAN routing table en- 
tries refer to specific neighboring nodes in each dimen- 
sion, while the Chord finger table entries refer to specific 
points in the nodeId space. This makes proximity rout- 
ing harder but it protects nodes from attacks that exploit 
attacking nodes' proximity to their victims. 

2.4 Sys tem model  

The system runs on a set of N nodes that form an over- 
lay using one of the protocols described in the previous 
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section. We assume a bound f (0 < f < 1) on the frac- 
tion of nodes that may be faulty. Faults are modeled 
using a constrained-collusion Byzantine failure model, 
i.e., faulty nodes can behave arbitrarily and they may not 
all necessarily be operating as a single conspiracy. The 
set of  faulty nodes is partitioned into independent coali- 
tions, which are disjoint sets with size bounded by cN 
(1/N < c < f ) .  When c = f ,  all faulty nodes may collude 
with each other to cause the most damage to the system. 
We model the case where nodes are grouped into multi- 
ple independent coalitions by setting c < f .  Members of 
a coalition can work together to corrupt the overlay but 
are unaware of nodes in other coalitions. We studied the 
behavior of the system with c ranging from I / N  to f to 
model different failure scenarios. 

We assume that every node in the p2p overlay has a static 
IP address at which it can be contacted. In this paper, 
we ignore nodes with dynamically assigned IP addresses, 
and nodes behind network address translation boxes or 
firewalls. While p2p overlays can be extended to address 
these concerns, this paper focuses on more traditional 
network hosts. 

The nodes communicate over normal Internet connec- 
tions. We distinguish between two types of communica- 
tion: network-level, where nodes communicate directly 
without routing through the overlay, and overlay-level, 
where messages are routed through the overlay using 
one of the protocols discussed in the previous section. 
We use cryptographic techniques to prevent adversaries 
from observing or modifying network-level communica- 
tion between correct nodes. An adversary has complete 
control over network-level communication to and from 
nodes that it controls. This can compromise overlay- 
level communication that is routed through a faulty node. 
Adversaries may delay messages between correct nodes 
but we assume that any message sent by a correct node to 
a correct destination over an overlay route with no faulty 
nodes is delivered within time D with probability PD. 

2.5 Secure routing 

Next, we define a secure routing primitive that can be 
combined with existing techniques to construct secure 
applications on structured p2p overlays. Subsequent sec- 
tions show how to implement the secure routing prim- 
itive under the fault and network models that we de- 
scribed in the previous section. 

The routing primitives implemented by current struc- 
tured p2p overlays provide a best-effort service to de- 
liver a message to a replica root associated with a given 
key. With malicious overlay nodes, the message may be 
dropped or corrupted, or it may be delivered to a mali- 
cious node instead of a legitimate replica root. Therefore, 
these primitives cannot be used to construct secure appli- 
cations. For example, when inserting an object, an appli- 
cation cannot ensure that the replicas are placed on le- 

gitimate, diverse replica roots as opposed to faulty nodes 
that impersonate replica roots. Even if applications use 
cryptographic methods to authenticate objects, malicious 
nodes may still corrupt, delete, deny access to or supply 
stale copies of all replicas of  an object. 

To address this problem, we define a secure routing prim- 
itive. The secure routing primitive ensures that when a 
non-faulty node sends a message to a key k, the message 
reaches all non-faulty members in the set of  replica roots 
Rk with very high probability. Rk is defined as the set of 
nodes that contains, for each member of the set of replica 
keys associated with k, a live root node that is responsible 
for that replica key. In Pastry, for instance, R~ is simply a 
set of live nodes with nodeIds numerically closest to the 
key. Secure routing ensures that (1) the message is even- 
tually delivered, despite nodes that may corrupt, drop or 
misroute the message; and (2) the message is delivered 
to all legitimate replica roots for the key, despite nodes 
that may attempt to impersonate a replica root. 

Secure routing can be combined with existing security 
techniques to safely maintain state in a structured p2p 
overlay. For instance, self-certifying data can be stored 
on the replica roots, or a Byzantine-fault-tolerant repli- 
cation algorithm like BFT [4] can be used to maintain 
the replicated state. Secure routing guarantees that the 
replicas are initially placed on legitimate replica roots, 
and that a lookup message reaches a replica if one exists. 
Similarly, secure routing can be used to build other se- 
cure services, such as maintaining file metadata and user 
quotas in a distributed storage utility. The details of  such 
services are beyond the scope of this paper. 

Implementing the secure routing primitive requires the 
solution of three problems: securely assigning nodeIds 
to nodes, securely maintaining the routing tables, and 
securely forwarding messages. Secure nodeId assign- 
ment ensures that an attacker cannot choose the value of 
nodeIds assigned to the nodes that the attacker controls. 
Without it, the attacker could arrange to control all repli- 
cas of a given object, or to mediate all traffic to and from 
a victim node. 

Secure routing table maintenance ensures that the frac- 
tion of faulty nodes that appear in the routing tables of 
correct nodes does not exceed, on average, the fraction 
of faulty nodes in the entire overlay. Without it, an at- 
tacker could prevent correct message delivery, given only 
a relatively small number of  faulty nodes. Finally, secure 
message forwarding ensures that at least one copy of a 
message sent to a key reaches each correct replica root 
for the key with high probability. Sections 3, 4 and 5 
describe solutions to each of these problems. 

3 Secure nodeld assignment 

The performance and security of structured p2p over- 
lay networks depend on the fundamental assumption that 
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there is a uniform random distribution of nodeIds that 
cannot be controlled by an attacker. This section dis- 
cusses what goes wrong when the attacker violates this 
assumption, and how this problem can be addressed. 

3.1 A t t acks  

Attackers who can choose nodelds can compromise the 
integrity of a structured p2p overlay, without needing to 
control a particularly large fraction of the nodes. For ex- 
ample, an attacker may partition a Pastry or Chord over- 
lay if she controls two complete and disjoint neighbor 
sets. Such attackers may also target particular victim 
nodes by carefully choosing nodelds. For example, they 
may arrange for every entry in a victim's routing table 
and neighbor set to point to a hostile node in a Chord 
overlay. At that point, the victim's access to the overlay 
network is completely mediated by the attacker. 

Attackers who can choose nodelds can also control ac- 
cess to target objects. The attacker can choose the closest 
nodelds to all replica keys for a particular target object, 
thus controlling all replica roots. As a result, the attacker 
could delete, corrupt, or deny access to the object. Even 
when attackers cannot choose nodelds, they may still be 
able to mount all the attacks above (and more) if they can 
obtain a large number of legitimate nodelds easily. This 
is known as a Sybil attack [10]. 

Previous approaches to nodeld assignment have ei- 
ther assumed nodelds are chosen randomly by the new 
node [5] or compute nodelds by hashing the IP address 
of the node [20]. Neither approach is secure because an 
attacker has the opportunity either to choose nodelds that 
are not necessarily random, or to choose an IP address 
that hashes to a desired interval in the nodeId space. Par- 
ticularly as IPv6 is deployed, even modest attackers will 
have more potential IP addresses at their disposal than 
there are likely to be nodes in a given p2p network. 

3.2 Solut ion:  cert i f ied n o d e l d s  

One solution to securing the assignment of nodelds is 
to delegate the problem to a central, trusted authority. 
We use a set of trusted certification authorities (CAs) to 
assign nodelds to principals and to sign nodeld certifi- 
cates, which bind a random nodeId to the public key that 
speaks for its principal and an IP address. The CAs en- 
sure that nodelds are chosen randomly from the id space, 
and prevent nodes from forging nodelds. Furthermore, 
these certificates give the overlay a public key infras- 
tructure, suitable for establishing encrypted and authen- 
ticated channels between nodes. 

Like conventional CAs, ours can be offline to reduce the 
risk of exposing certificate signing keys. They are not 
involved in the regular operation of the overlay. Nodes 
with valid nodeld certificates can join the overlay, route 
messages, and leave repeatedly without involvement of 
the CAs. As with any CA infrastructure, the CA's public 

keys must be well known, and can be installed as part 
of the node software itself, as is done with current Web 
browsers. 

The inclusion of an IP address in the certificate deserves 
some explanation. Some p2p protocols, such as Tapestry 
and Pastry, measure the network delay between nodes 
and choose routing table entries that minimize delay. If 
an attacker with multiple legitimate nodeld certificates 
could freely swap certificates among nodes it controls, it 
might be able to increase the fraction of attacker's nodes 
in a target node's routing table. By binding the nodeld to 
an IP address, it becomes harder for an attacker to move 
nodelds across nodes. We allow multiple nodeld certifi- 
cates per IP address because the IP addresses of nodes 
may change and because otherwise, attackers could deny 
service by hijacking victim's IP addresses. 

A downside of binding nodelds to IP addresses is that, if 
a node's IP address changes, either as a result of dynamic 
address assignment, host mobility, or organizational net- 
work changes, then the node's old certificate and nodeld 
become invalid. In p2p systems where IP addresses are 
allowed to change dynamically, nodeld swapping attacks 
may be unavoidable. 

Certified nodelds work well when nodes have fixed 
nodelds, which is the case in Chord, Pastry, and Tapestry. 
However, it might be harder to secure nodeld assign- 
ment in CAN. CAN nodelds represent a zone in a d- 
dimensional space that is split in half when a new node 
joins [16]. Both the nodeld of the original node and the 
nodeld of the joining node change during this process. 

3.2.1 Sybil attacks 

While nodeld assignment by a CA ensures that nodelds 
are chosen randomly, it is also important to prevent an 
attacker from easily obtaining a large number of  nodeld 
certificates. One solution is to require an attacker to pay 
money for certificates, via credit card or any other suit- 
able mechanism. With this solution, the cost of an attack 
grows naturally with the size of the network. For exam- 
ple, if nodeld certificates cost $20, controlling 10% of an 
overlay with 1,000 nodes costs $2,000 and the cost rises 
to $2,000,000 with 1,000,000 nodes. The cost of targeted 
attacks is even higher; it costs an expected $20,000 to ob- 
tain the closest nodeld to a particular point in the id space 
in an overlay with 1,000 nodes. Apart from making at- 
tacks economically expensive, these fees can also fund 
the operation of the CAs. 

Another solution is to bind nodelds to real-world iden- 
tities instead of charging money. In practice, differ- 
ent forms of CAs are suitable in different situations. 
The identity-based CA is the preferred solution in "vir- 
tual private" overlays run by an organization that al- 
ready maintains employment or membership records 
with strong identity checks. In an open Internet deploy- 
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ment, a money-only CA may be more suitable because 
it avoids the complexities of authenticating real-world 
identities. 

None of the known solutions to nodeld assignment are 
effective when the overlay network is very small. For 
small overlay networks, we must require that all mem- 
bers of the network are trusted not to cheat. 0nly when 
a network reaches a critical mass, where it becomes suf- 
ficiently hard for an attacker to muster enough resources 
to control a significant fraction of the overlay, should un- 
trusted nodes be allowed to join. 

3.3 Rejected: distributed nodeld generation 

The CAs represent points of failure, vulnerable to both 
technical and legal attacks. Also, for some p2p net- 
works, it may be cumbersome to require users to spend 
money or prove their real-world identities. Therefore, 
it would be desirable to construct secure p2p overlays 
without requiring centralized authorities, fees or iden- 
tity checks. Unfortunately, fully decentralized nodeld 
assignment appears to have fundamental security limi- 
tations [10]. None of the methods we are aware of can 
ultimately prevent a determined attacker from acquiring 
a large collection of nodeIds. 

However, several techniques may be able to, at a mini- 
mum, moderate the rate at which an attacker can acquire 
nodelds. One possible solution is to require prospective 
nodes to solve crypto puzzles [15] to gain the right to 
use a nodeld, an approach that has been taken to address 
a number of  denial of service attacks [13, 8]. Unfortu- 
nately, the cost of solving a crypto puzzle must be accept- 
able to the slowest legitimate node, yet the puzzle must 
be hard enough to sufficiently slow down an attacker with 
access to many fast machines. This conflict limits the ef- 
fectiveness of  any such technique. 

For completeness, we briefly describe here one relatively 
simple approach to generate certified nodelds in a com- 
pletely distributed fashion using crypto puzzles. The idea 
is to require new nodes to generate a key pair with the 
property that the SHA-i hash of the public key has the 
first p bits zero. The expected number of operations re- 
quired to generate such a key pair is 2 p. The properties 
of public-key cryptography allow the nodes to use a se- 
cure hash of  the public key as their nodeld. This hash 
should be computed using SHA-1 with a different ini- 
tialization vector or MD5 to avoid reducing the number 
of random bits in nodelds. Nodes can prove that they 
performed the required amount of work to use a nodeld 
without revealing information that would allow others to 
reuse their work. The value of p can be set to achieve the 
desired level of security. 

It is also possible to bind IP addresses with nodelds to 
avoid attacks on overlays that exploit network locality. 
The idea is to require nodes to consume resources in or- 

der to be able to use a given nodeId with an IP address. 
We do this by requiring nodes to find a string x such 
that SHA- 1 (SHA- 1 (ipa&&x),nodeld) has p/bits  equal to 
zero. Nodes would be required to present such an x for 
the pair (nodeld, ipaddr) to be accepted by others. 

Finally, it is possible to periodically invalidate nodelds 
by having some trusted entity broadcast to the overlay 
a message supplying a different initialization vector for 
the hash computations. This makes it harder for an at- 
tacker to accumulate many nodeIds over time and to 
reuse nodeIds computed for one overlay in another over- 
lay. However, it requires legitimate nodes to periodically 
spend additional time and communication to maintain 
their membership in the overlay. 

4 Secure routing table maintenance 

We now turn our attention to the problem of secure rout- 
ing table maintenance. The routing table maintenance 
mechanisms are used to create routing tables and neigh- 
bor sets for joining nodes, and to maintain them after cre- 
ation. Ideally, each routing table and neighbor set should 
have an average fraction of only f random entries that 
point to nodes controlled by the attacker (called "bad en- 
tries"). But attackers can increase the fraction of bad en- 
tries by supplying bad routing updates, which reduces the 
probability of routing successfully to replica roots. 

Preventing attackers from choosing nodelds is necessary 
to avoid this problem but it is not sufficient as illustrated 
by the two attacks discussed next. We also discuss solu- 
tions to this problem. 

4.1 A t t a c k s  

The first attack is aimed at routing algorithms that use 
network proximity information to improve routing ef- 
ficiency: attackers may fake proximity to increase the 
fraction of bad routing table entries. For example, the 
network model that we assumed allows an attacker to 
control communication to and from faulty nodes that it 
controls. When a correct node p sends a probe to es- 
timate delay to a faulty node with a certain nodeld, an 
attacker can intercept the probe and have the faulty node 
closest to p reply to it. If  the attacker controls enough 
faulty nodes spread over the Internet, it can make nodes 
that it controls appear close to correct nodes to increase 
the probability that they are used for routing. The at- 
tack is harder when c (the maximal fraction of colluding 
nodes) is small even if f is large. 

This attack can be ruled out by a more restrictive com- 
munication model, since nodeld certificates bind IP ad- 
dresses to nodelds (see Section 3.2). For example, if 
faulty nodes can only observe messages that are sent to 
their own IP address [19], this attack is prevented. But 
note that a rogue ISP or corporation with several offices 
around the world could easily perform this attack by con- 
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figuring their routers appropriately. The attack is also 
possible if there is any other form of indirection that the 
attacker can control, e.g., mobile IPv6. 

The second attack does not manipulate proximity in-~br- 
mation. Instead, it exploits the fact that it is hard to de- 
termine whether routing updates are legitimate in overlay 
protocols like Tapestry and Pastry. Nodes receive routing 
updates when they join the overlay and when other nodes 
join, and they fetch routing table rows from other nodes 
in their routing table periodically to patch holes and re- 
duce hop delays. In these systems, attackers can more 
easily supply routing updates that always point to faulty 
nodes. This simple attack causes the fraction of bad rout- 
ing table entries to increase toward one as the bad routing 
updates are propagated. More precisely, routing updates 
from correct nodes point to a faulty node with probability 
at least f whereas this probability can be as high as one 
for routing updates from faulty nodes. Correct nodes re- 
ceive updates from other correct nodes with probability 
at most 1 - f and from faulty nodes with probability at 
least f .  Therefore, the probability that a routing table en- 
try is faulty after an update is at least (1 - f )  x f + f x 1, 
which is greater than f .  This effect cascades with each 
subsequent update, causing the fraction of faulty entries 
to tend towards one. 

Systems without strong constraints on the set of nodeIds 
that can fill each routing table slot are more vulnerable to 
this attack. Pastry and Tapestry impose very weak con- 
straints at the top levels of routing tables. This flexibility 
makes it hard to determine if routing updates are unbi- 
ased but it allows these systems to effectively exploit net- 
work proximity to improve routing performance. CAN 
and Chord impose strong constraints on nodelds in rout- 
ing table entries: they need to be the closest nodeIds to 
some point in the id space. This makes it hard to ex- 
ploit network proximity to improve performance but it is 
good for security; if attackers cannot choose the nodeIds 
they control, the probability that an attacker controls the 
nodeId closest to a point in the id space is f .  

4.2 Solution: constrained routing table 

To enable secure routing table maintenance, it is impor- 
tant to impose strong constraints on the set of nodeIds 
that can fill each slot in a routing table. For example, 
the entry in each slot can be constrained to be the closest 
nodeld to some point in the id space as in Chord. This 
constraint can be verified and it is independent of net- 
work proximity information, which can be manipulated 
by attackers. 

The solution that we propose uses two routing tables: 
one that exploits network proximity information for ef- 
ficient routing (as in Pastry and Tapestry), and one that 
constrains routing table entries (as in Chord). In normal 
operation, the first routing table is used to forward mes- 
sages to achieve good performance. The second one is 

used only when the efficient routing technique fails. We 
use the test in Section 5.2 to detect when routing fails. 

We modified Pastry to use this solution. We use the nor- 
mal locality-aware Pastry routing table and an additional 
constrained Pastry routing table. In the locality-aware 
routing table of a node with identifier i, the slot at level 
l and domain d can contain any nodeId that shares the 
first l digits with i and has the value d in the l + 1st digit. 
In the constrained routing table, the entry is further con- 
strained to point to the closest nodeId to a point p in the 
domain. We define p as follows: it shares the first I digits 
with i, it has the value d in the l + 1st digit, and it has the 
same remaining digits as i. 

Pastry's message forwarding works with the constrained 
routing table without modifications. The same would be 
true with Tapestry. But the algorithms to initialize and 
maintain the routing table were modified as follows. 

All overlay routing algorithms rely on a bootstrap node 
to initialize the routing state of a newly joining node. The 
bootstrap node is responsible for routing a message using 
the nodeId of the joining node as the key. If  the bootstrap 
node is faulty, it can completely corrupt the view of the 
overlay network as seen by the new node. Therefore, it 
is necessary to use a set of diverse bootstrap nodes large 
enough to ensure that with very high probability, at least 
one of them is correct. The use of nodeId certificates 
makes the task of  choosing such a set easier because the 
attacker cannot forge nodeIds. 

A newly joining node, n, picks a set of bootstrap nodes 
and asks all of them to route using its nodeId as the key. 
Then, non-faulty bootstrap nodes use secure forwarding 
techniques (described in Section 5.2) to obtain the neigh- 
bor set for the joining node. Node n collects the proposed 
neighbor sets from each of the bootstrap nodes, and picks 
the "closest" live nodeIds from each proposed set to be 
its neighbor set (where the definition of closest is proto- 
col specific). 

The locality-aware routing table is initialized as before 
by collecting rows from the nodes along the route to the 
nodeId. The difference is that there are several routes; n 
picks the entry with minimal network delay from the set 
of candidates it receives for each routing table slot. 

Each entry in the constrained routing table can be initial- 
ized by using secure forwarding to obtain the live nodeId 
closest to the desired point p in the id space. This is 
similar to what is done in Chord. The problem is that it 
is quite expensive with b > 1 (recall that b controls the 
number of columns in the routing table of Tapestry and 
Pastry). To reduce the overhead, we can take advantage 
of the fact that, by induction, the constrained routing ta- 
bles of the nodes in n's neighbor set point to entries that 
are close to the desired point p. Therefore, n can collect 
routing tables from the nodes in its neighbor set and use 
them to initialize its constrained routing table. From the 
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set of candidates that it receives for each entry, it picks 
the nodeId that is closest to the desired point for that en- 
try. As a side effect of this process, n informs the nodes 
in its neighbor set of its arrival. 

We exploit the symmetry in the constrained routing table 
to inform nodes that need to update their routing tables 
to reflect n's arrival: n checks its neighbor set and the set 
of  candidates for each entry to determine which candi- 
dates should update routing table entries to point to n. tt 
informs those candidates of  its arrival. 

To ensure neighbor set stabilization in the absence of new 
joins and leaves, n informs the members of its neighbor 
set whenever it changes and it periodically retransmits 
this information until its receipt is acknowledged. 

5 S e c u r e  m e s s a g e  f o r w a r d i n g  

The use of  certified nodelds and secure routing table 
maintenance ensure that each constrained routing table 
(and neighbor set) has an average fraction of only f ran- 
dom entries that point to nodes controlled by the attacker. 
But routing with the constrained routing table is not suf- 
ficient because the attacker can reduce the probability of 
successful delivery by simply not forwarding messages 
according to the algorithm. The attack is effective even 
when f is small, as we will show. This section describes 
an efficient solution to this problem. 

5.1 Attacks 

All structured p2p overlays provide a primitive to send a 
message to a key. In the absence of faults, the message is 
delivered to the root node for the key after an average of 
h routing hops. But routing may fail if any of the h - 1 
nodes along the route between the sender and the root are 
faulty; faulty nodes may simply drop the message, route 
the message to the wrong place, or pretend to be the key's 
root. Therefore, the probability of routing successfully 
between two correct nodes when a fraction f of the nodes 
is faulty is only: (1 - f )h-1 ,  which is independent ofc.  

The root node for a key may itself be faulty. As discussed 
before, applications can tolerate root faults by replicat- 
ing the information associated with the key on several 
nodes - -  the replica roots'. Therefore, the probability 
of  routing successfully to a correct replica root is only: 
tJ = ( 1 - f )h.  The value o f h  depends on the overlay: it is 
(d/4) (N l/d) in CAN, log2 (N)/2 in Chord, and log2b (N) 
in Pastry and Tapestry. 

We ran simulations of Pastry to validate this model. The 
model predicts a probability of success slightly lower 
than the probability that we observed in the simulations 
(because the number of Pastry hops is slightly less than 
log2b(N ) on average [3]) but the error was below 2%. 

Figure 3 plots the probability of routing to a correct 
replica in Pastry (computed using the model) for differ- 
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Figure 3: Probability of routing to a correct replica. 

ent values of f ,  N, and b = 4. The probability drops 
quite fast when f or N increase. Even with only 10% 
of the nodes compromised, the probability of successful 
routing is only 65% when there are 100,000 nodes in a 
Pastry overlay. 

In CAN, Pastry, and Tapestry, applications can reduce 
the number of hops by increasing the value of d or b. 
Fewer hops increase the probability of routing correctly. 
For example, the probability of  successful delivery with 
f = 0.1 and 100,000 nodes is 65% in Pastry when b = 4 
and 75% when b = 6. But increasing b also increases the 
cost of routing table maintenance; a high probability of  
routing success requires an impractically large value of 
b. Chord currently uses a fixed b = 1, which results in 
a low probability of success, e.g., the probability is only 
42% under the same conditions. 

5.2 Solution: detect faults, use diverse routes 

The results in Figure 3 show that it is important to devise 
mechanisms to route securely. We want a secure routing 
primitive that takes a message and a destination key and 
ensures that with very high probability at least one copy 
of the message reaches each correct replica root for the 
key. The question is how to do this efficiently. 

Our approach is to route a message efficiently and to ap- 
ply a failure test to determine if routing worked. We only 
use more expensive redundant routing when the failure 
test returns positive. In more detail, our secure rout- 
ing primitive routes a message efficiently to the root of  
the destination key using the locality-aware routing ta- 
ble. Then, it collects the prospective set of replica roots 
from the prospective root node and applies the failure 
test to the set. If  the test is negative, the prospective 
replica roots are accepted as the correct ones. If  it is pos- 
itive, message copies are sent over diverse routes toward 
the various replica roots such that with high probability 
each correct replica root is reached. We start by describ- 
ing how to implement the failure test. Then we explain 
redundant routing and why we rejected an alternate ap- 
proach called iterative routing. 
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5.2.1 R o u t i n g  t~i lure  tes t  

The failure test takes a key and a set of  prospective 
replica roots for the key, It returns negative if the set 
of  roots is likely to be correct for the key. Otherwise, it 
returns positive. Of course, routing can fail without the 
sender ever receiving a set of  prospective replica roots. 
The sender detects this by starting a timer when it sends 
a message. If  it does not receive a response before the 
timer expires, the failure test returns positive triggering 
the use of  redundant routing. 

Detecting routing failures is difficult because a coalition 
of  faulty nodes can pretend to be the legitimate replica 
roots for a given key. Since the replica roots are de- 
termined by the structure of  the overlay, a node whose 
nodeId is far from the key must rely on overlay routing 
to determine the correct set of  replica roots. But if a mes- 
sage is routed by a faulty node, the adversary can fabri- 
cate a credible route and replica root set that contain only 
nodes it controls. Furthermore, it might be the case that 
the adversary just happens to legitimately control one of 
the actual replica roots. This problem is common to all 
structured p2p overlay protocols. 

The routing failure test is based on the observation that 
the average density of  nodelds per unit o f  "volume" in 
the id space is greater than the average density of faulty 
nodeIds. The test works by comparing the density of 
nodelds in the neighbor set of the sender with the den- 
sity of  nodeIds close to the replica roots of  the destina- 
tion key. We describe the test in detail only in the context 
of  Pastry to simplify the presentation; the generalization 
to other overlays is straightforward. Overlays that dis- 
tribute replica keys for a key uniformly over the id space 
can still use this check by comparing the density at the 
sender with the average distance between each replica 
key and its root's nodeld. 

In Pastry, the set of  replica roots for a key is a subset of 
the neighbor set of  the key's root node, called the key's 
root neigbor set. Each correct node p computes the aver- 
age numerical distance, ,up, between consecutive nodeIds 
in its neighbor set. The neighbor set of  p contains 1 + 1 
live nodes: p, the l /2  nodes with the closest nodeIds 
less than p 's ,  and the I /2  nodes with the closest nodeIds 
greater than p's. To test a prospective root neighbor set, 
rn = ido, ... ,idl+b for a key x, p checks that: 

1. all nodeIds in rn have a valid nodeId certificate, the 
closest nodeId to the key is the middle one, and the 
nodeIds satisfy the definition o f  a neighbor set 

2. the average numerical distance, ,urn, between con- 
secutive nodeIds in rn satisfies: prn < ,up x y 

If  rn satisfies both conditions, the test returns negative; 
otherwise, it returns positive. The test can be inaccurate 
in one of  two ways: it can return a false positive when the 

prospective root neighbor set is correct, or it can return a 
false negative when the prospective set is incorrect. We 
call the probability of  false positives c~ and the proba- 
bility of  false negatives 13. The parameter y controls the 
trade off between cz and 13. Intuitively, increasing y de- 
creases o~ but it also increases 13. 

Assuming that there are N live nodes with nodeIds uni- 
formly distributed over the id space (which has length 
D = 2128), the distances between consecutive nodeIds 
are approximately independent exponential random vari- 
ables with mean D / N  for large N. The same holds for the 
distances between consecutive nodeIds of  faulty nodes 
that can collude together but the mean is D/(c  x N). It 
is interesting to note that c~ and 13 are independent of  f .  
They only depend on the upper bound, c, on the fraction 
of  colluding nodes because faulty nodes only know the 
identities of faulty nodes that they collude with. 

Under these assumptions, we have derived the following 
expressions to compute c~ and 13 (see detailed derivation 
in the Appendix): 

nn~e -n-k fO~ un-le-n(u-l) f,~ ~-le-k(v-l) 
ct(n,k,y)- (n-1)!(k-1)t (n-l)! (k-l)! dvdu 

1 
13(n,~,v,c) = a(~,,,, ~ )  

These expressions can be used to compute c~ and 13 nu- 
merically. We also computed the following closed-form 
upper bounds for (~ and 13: 

_< exp {-k[(r+ 1)log r~l  - logy] } 

r +yc 

where n is the number of  distance samples used to com- 
pute,up, k is the number of  distance samples used to com- 
pute,urn, and r = n/k.  The test above used n = k = l. 

The analysis shows that c~ and [3 are independent of  N 
(provided k << N), and that the test's accuracy can be 
improved by increasing the number of  distance samples 
used to compute the means. It is easy to increase the 
number of  samples n used to compute ,Up by augment- 
ing the mechanism that is already in place to stabilize 
neighbor sets. This mechanism propagates nodeIds that 
are added and removed from a neighbor set to the other 
members of  the set; it can be extended to propagate 
nodeIds further but we omit the details due to tack of 
space. It is hard to increase the number of  samples used 
to compute ,urn because of  some attacks that we describe 
below. Therefore, we keep k = I. 

We ran several simulations to evaluate the effectiveness 
of  our routing failure test. The simulations ran in a sys- 
tem with 100,000 random nodeIds. Figure 4 plots values 
of  a and 13 for different values o f y  with f = c = 0.3, the 

USENIX Association 5th Symposium on Operating Systems Design and Implementation 307 



www.manaraa.com

13 

2: 

0.01 

0.009 

0.008 

0.007 

0.006 

0.005 

0.004 

0.003 

0.002 

0.001 

0 

{_171111 iiii [, ............................................... . . . . . . . . . . . . .  

~ - F ° 'beta upper bound 
A .t I" " "beta predicted 
~t l . . . .  beta measured 

~ ] - -  alpha measured 
I- - -  alpha predicted i 

.... \ / ............... alpha upper bound 

1 1.5 2 25  3 
gamma 

Figure 4: Routing failure test: probability of false pos- 
itives (o0 and negatives (13). The predicted curves are 
almost indistinguishable from the simulation measure- 
ments but the upper bounds are not tight. 

number of samples at the sender is n = 256, and the num- 
ber of root neighbors is k = l = 32. The figure shows pre- 
dicted values computed numerically, the upper bounds, 
and values measured in the simulations. The predicted 
curves match the measured curves almost exactly but the 
upper bounds are not very tight. The minimum error 
is obtained when ot = 13, which is equal to 0.0008 with 
7 = 1.72 in this case. 

Attacks: There are several attacks tbat could invalidate 
the analysis and weaken our routing failure test. First, the 
attacker can collect nodeId certificates of nodes that have 
left the overlay, and use them to increase the density of 
a prospective root neighbor set. Second, the attacker can 
include both nodeIds of nodes it controls and nodeIds of 
correct nodes in a prospective root neighbor set. Both 
attacks can reduce the probability that messages reach 
all correct replica roots. The second attack is harder to 
counter in overlays that distribute replica keys over the id 
space because replica roots have no detailed knowledge 
about the nodeIds close to other replica keys. 

These attacks can be avoided by having the sender con- 
tact all the prospective root neighbors to determine if 
they are live and if they have a nodeId certificate that 
was omitted from the prospective root neighbor set. To 
implement this efficiently, the prospective root returns to 
the sender a message with the list of nodeId certificates, 
a list with the secure hashes of the neighbor sets reported 
by each of the prospective root neighbors, and the set of 
nodeIds (not in the prospective root neighbor set) that are 
used to compute the hashes in this list. The sender checks 
that the hashes are consistent with the identifiers of the 
prospective root neighbors. Then, it sends each prospec- 
tive root neigbor the corresponding neighbor set hash for 
confirmation. 

In the absence of faults, the root neighbors will confirm 
the hashes and the sender can perform the density corn- 
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Figure 5: Routing failure test: minimum error probabil- 
ity without nodeId suppression attacks and varying num- 
ber of samples. 

parison immediately. For a sufficiently large timeout, 
this happens with probability "c = binom(O;k,f), where 
binom is the binomial distribution [6] and k is the num- 
ber of root neighbors. With faulty nodes in the prospec- 
tive root neighbor set, the routing failure test may re- 
quire more communication before the density check can 
be run. We are still studying the best strategy to deal with 
this case. Currently, we consider the test failed when the 
prospective root neighbors don't  agree and use redundant 
routing. But, it may be worthwhile investing some addi- 
tional communication before reverting to redundant rout- 
ing. 

In addition to these attacks, there is a nodeld suppression 
attack that seems to be unavoidable and significantly de- 
creases the accuracy of this test. The attacker can sup- 
press nodeIds close to the sender by leaving the over- 
lay, which increases [3. Similarly, the attacker can sup- 
press nodeIds in the root neighbor set, which increases 
c~. Furthermore, the attacker can alternate between the 
two modes and honest nodes have no way of detecting in 
which mode they are operating. 

We ran simulations to compute the minimum error prob- 
ability (c~ = 13) with and without nodeId suppression at- 
tacks for different values of c = f .  The probability of 
error increases fast with c and it is higher than 0.001 for 
c _> 0.35 even with 256 samples at the sender. The nodeld 
suppression attack increases the minimum probability of 
error for large percentages of compromised nodes, e.g., 
the probability of error is higher than 0.001 for c > 0.2 
even with 256 samples at the sender. Figures 5 and 6 
show the results without and with nodeId suppression at- 
tacks, respectively. 

These results indicate that our routing failure test is not 
very accurate. But, fortunately we can trade off an in- 
crease in (z to achieve a target 13 and use redundant rout- 
ing to disambiguate false positives. We ran simulations 
to determine the minimum (z that can be achieved for a 
target [3 -= 0.001 with different values of c = f ,  and dif- 
ferent numbers of samples at the sender. Figure 7 shows 
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Figure 6: Routing failure test: minimum error probabil- 
ity with nodeId suppression attacks and varying number 
of samples. 
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Figure 7: Routing failure test: probability of false posi- 
tives for a false negative rate of  0.001 with nodeld sup- 
pression attacks and varying number of samples. 

the results with nodeId suppression attacks. 

The results show that the test is not meaningful for this 
target [3 and c > 0.3 with nodeld suppression attacks. 
However, setting y = 1.23 with 256 samples at the sender 
enables the routing failure test to achieve the target 13 for 
c < 0.3. For this value of 7 and with c = 0.3, nodeld 
suppression attacks can increase ~ to 0.77. But without 
nodeld suppression attacks the value of ~ is only 0.12, 
i.e., redundant routing is required 12% of the time. 

5.2.2 Redundant routing 

The redundant routing technique is invoked when the 
routing failure test is positive. The idea is simply to route 
copies of the message over multiple routes toward each 
of the destination key's replica roots. If enough copies of 
the message are sent along diverse routes to each replica 
key, all correct replica roots will receive at least one copy 
of the message with high probability. 

The issue is how to ensure that routes are diverse. One 
approach is to ask the members of the sender's neighbor 
set to forward the copies of the message to the replica 
keys. This technique is sufficient in overlays that dis- 
tribute the replica keys uniformly over the id space (e.g., 

CAN and Tapestry). But it is not sufficient in overlays 
that choose replica roots in the neighbor set of the key's 
root (e.g., Chord and Pastry) because the routes all con- 
verge on the key's root, which might be faulty. For these 
overlays, we developed a technique called neighbor set 
anycast that sends copies of the message toward the des- 
tination key until they reach a node with the key's root in 
its neighbor set. Then it uses the detailed knowledge that 
such a node has about the portion of the id space around 
the destination key to ensure that all correct replica roots 
receive a copy of the message. 

To simplify the presentation, we only describe in detail 
how redundant routing works in Pastry. If a correct node 
p sends a message to a destination key x and the routing 
failure test is positive, it does the following: 

(1) p sends r messages to the destination key x. Each 
message is forwarded via a different member of p ' s  
neighbor set; this causes the messages to use diverse 
routes. All messages are forwarded using the constrained 
routing table and they include a nonce. 

(2) Any correct node that receives one of the messages 
and has x's root in its neighbor set returns its nodeld cer- 
tificate and the nonce, signed with its private key, to p. 

(3) p collects in a set N the I /2  + 1 nodeld certificates 
numerically closest to x on the left, and the I /2 + 1 clos- 
est to x on the right. Only certificates with valid signed 
nonces are added to N and they are first marked pending. 

(4) After a timeout or after all r replies are received, p 
sends a list with the nodelds in N to each node marked 
pending in N and marks the nodes done. 

(5) Any correct node that receives this list forwards p ' s  
original message to the nodes in its neighbor set that are 
not in the list, or it sends a confirmation to p if there 
are no such nodes. This may cause steps 2 to 4 to be 
repeated. 

(6) Once p has received a confirmation from each of the 
nodes in N ,  or step 4 was executed three times, it com- 
putes the set of replica roots for x from N.  

If the timeout is sufficiently large and correct nodes have 
another correct node in each half of their neighbor set 1, 
the probability of reaching all correct replica roots o fx  is 
approximately equal to the probability that at least one of 
the anycast messages is forwarded over a route with no 
faults to a correct node with the key's root in its neighbor 
set. Assuming independent routes, this probability is: 

1 - binom(O; r, (1 - f )  l + l ° g 2 b N )  

where binom is the binomial distribution [6] with 0 suc- 
cessful routes, r trials, and the probability of routing suc- 
cessfully in each trial is (1 -f)l+l°g26N. The + 1 counts 

1The neighbor set size 1 should be chosen to ensure this with high 
probability 
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the extra hop for messages routed through a neighbor set 
member. The probability of success for this technique 
depends on f and is independent of c. 

We also ran simulations to determine the probability of  
reaching all correct replica roots with our redundant rout- 
ing technique. Figure 8 plots the predicted probabil- 
ity and the probability measured in the simulator for 
100,000 nodes, b = 4, and 1 = r = 32. The analytic 
model matches the results well for high success proba- 
bilities. The results show that the probability of success 
is greater than 0.999 for f < 0.3. Therefore, this tech- 
nique combined with our routing failure test can achieve 
a reliability of approximately 0.999 for f < 0.3. 
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Figure 8: Model and simulation results for the probabil- 
ity of  reaching all correct replica roots using redundant 
routing with neighbor set anycast. 

We studied several versions of redundant routing that 
achieve the same probability of  success but perform dif- 
ferently. For example, the signed nonces are used to 
ensure that the nodeId certificates in N belong to live 
nodes. But nodes can avoid signing nonces by peri- 
odically signing their clock reading in a system with 
loosely synchronized clocks, and no signatures are nec- 
essary if the attacker cannot forge IP source addresses. 
We are still exploring the design space. For example, it 
should be possible to improve performance significantly 
by sending the anycast messages one at a time and us- 
ing a version of the routing failure test after each one. 
This approach would also work well when reading self- 
certifying data. 

5.2.3 Putting it all together: performance 

The performance of Pastry's secure routing primitive de- 
pends on the cost of the routing failure test, the cost of  
redundant routing, and on the probability that redundant 
routing can be avoided. This section presents an analysis 
of these costs and probability. For simplicity, we assume 
that all faulty nodes can collude (c = f ) ,  the number of  
probes used by redundant routing is equal to the neighbor 
set size (r = l), the number of samples at the source for 
routing failure tests is n = 256, and the number of nodes 
in the overlay is N = 100,000. 

The cost of the routing failure test when it returns nega- 
tive is an extra round-trip delay and 2l + 1 messages. The 
total number of bytes in all messages is: 

l x (IdSize + 2HashSize) + (l + 1) × IdCertSize + (2l + 1) x HdrSize 

Using PSS-R [1] for signing nodeId certificates with 
1024-bit modulus and 512-bit modulus for the node pub- 
lic keys, the nodeId certificate size is 128B. Therefore, 
the extra bandwidth consumed by the routing t3ilure test 
is approximately 5.6 KB with l = 32 and 2.9 KB with 
l = 16 (plus the space used up by message headers). 
When the test returns positive, it adds the same number 
of messages and bytes but the extra delay is the timeout 
period. 

The cost of redundant routing depends on the value of f .  
The best case occurs when all of the root's neighbor set 
is added to 9~ in the first iteration. In this case, redun- 
dant routing adds log2b N + 3 extra message delays and 
I x (log2b N + 3) messages. The total number of bytes in 
these messages is: 

l x (l x IdSize + IdCertSize + SigSize) + l x (log2b N + 3) x HdrSize 

Using PSS-R for signing nonces, the signed nonce size 
is 64B. Therefore, the extra bandwidth consumed in this 
case is 22 KB with I = 32 and 7 KB with l = 16 (plus the 
space used up by message headers). 

Under attack redundant routing adds a delay of at most 
three timeout periods and the expected number of extra 
messages is less than I x (1Og2b N + 2) + (l -- g) x (3 + g), 
where g = l x (1 - f)l°g2bN+l is the expected number of 
correct nodes in the root's neighbor set that is added to N 
in the first iteration. The expected number of  messages is 
less than 451 with l = 32 and f = 0.25 and less than 188 
with 1 = 16 and f = 0.18. The total number of  bytes sent 
under attack is similar to the best case value except that 
the sender sends an additional l(I - g) x IdSize bytes in 
nodeId lists and the number of messages increases. This 
is an additional 12 KB with l = 32 and f = 0.25 and 
1 KB with 1 -- 16 and f = 0.18 (plus the space used up 
by message headers). 

The probability of avoiding redundant routing is given 
by ¢y x "c x (1 - c~), where ~ is the probability that the 
overlay routes the message to the correct replica root, "c 
is the probability that there are no faulty nodes in the 
neighbor set of the root, and c~ is the false positive rate of 
the routing failure test. We use c~ = (1 - f ) l ° g z b N ,  which 
assumes that routing tables have an average of f random 
bad entries. This assumption holds for the locality-aware 
routing table in the absence of the attacks discussed in 
Section 4 and it holds for the constrained routing table 
even with these attacks. We do not have a good model of 
the effect of these attacks on the locality aware routing 
table but we believe that they are very hard to mount for 
small values of f (< 0.1). 
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Figure 9: Probability of avoiding redundant routing in 
two scenarios: (1) f _< 0.18 =~ E _> 0.999 with 7 = 1.8 
and l = 16, and (2) f < 0.25 =5 2 _> 0.999 with 5' = 1.58 
and I = 32. 

The parameters 7 and l, should be set based on the de- 
sired security level, which can be expressed as the prob- 
ability Z that all correct replica roots receive a copy of 
the message. The overlay size and the assignment of val- 
ues to the parameters implicitly define a bound on f.  If 
this bound is exceeded, Z will drop. For example, we 
saw that f < 0.3 =-~ Z > 0.999 with 7 = 1.23 and l = 32. 
But redundant routing is invoked 12% of the time for this 
value ofy  even with no faults. 

One can trade off security for improved performance by 
increasing y to reduce c~, and by decreasing l to reduce 
the cost of the routing failure test and redundant routing 
and to increase z. For example, consider the following 
two scenarios: (1)f _< 0.18 =~ E > 0.999 with 7 = 1.8 
and l = 16, and (2) f _< 0.25 ~ Z _> 0.999 with 7 = 1.58 
and l = 32. Figure 9 plots the probability of avoiding re- 
dundant routing in these two scenarios for different val- 
ues of f .  Without faults, redundant routing is invoked 
only 0.5% of the time in scenario (1) and 0.4% in (2). 
In the common case when the fraction of faulty nodes is 
small, the routing failure test improves performance sig- 
nificantly by avoiding the cost of redundant routing. 

5.2.4 Rejected: checked iterative routing 

An alternative to redundant routing is iterative routing, 
as suggested in Sit and Morris [19]: the sender starts by 
looking up the next hop in its routing table and setting 
a variable n to point to this node; then, the sender asks 
n for the next hop and updates n to point to the returned 
value. The process is repeated until this value is the root 
of the destination key. 

Iterative routing doubles the cost relative to the more tra- 
ditional recursive solution but it may increase the proba- 
bility of routing successfully because it allows the sender 
to pick an alternative next hop when it fails to receive an 
entry from a node. This is not a strong defense against an 
attacker who can provide a faulty node as the next hop. 
However, iterative routing can be augmented with hop 

tests to check whether the next hop in a route is correct. 

Hop tests are effective in systems like Chord or Pastry 
with the constrained routing table because each routing 
table entry should contain the nodeld closest to a specific 
point p in the id space. One can use a mechanism iden- 
tical to the nodeld density checking that we used for the 
routing failure test. The only difference is that the av- 
erage distance between consecutive nodelds close to the 
sender is compared to the distance between the nodeld 
in the routing table entry and the desired point p. We 
ran simulations to compute the false positive and false 
negative rates for this approach with different values of c 
(these rates are independent of f ) .  For example, the min- 
imum error for this hop test (c~ = [3) is equal to approx- 
imately 0.35 with c = 0.3 and 256 samples to compute 
the mean at the sender. 

The error is high because there is a single sample at the 
destination hop. However, our simulations indicate that 
iterative lookups using Pastry's constrained routing table 
with this hop check improve the probability of routing 
successfully. For example, the probability of routing suc- 
cessfully with c = 0.3, N = 100,000, b = 4, l = 32, and 
256 samples to compute the mean at the sender, improves 
from below 0.3 to 0.4. But it adds an extra 2.7 hops to 
each route on average because of false positives. 

We tried to increase the number of samples by having 
the sender fetch an entire routing table row during each 
iterative routing step without revealing the index of the 
required slot. Unfortunately, this performs worse than 
obtaining a single sample because the attacker can com- 
bine good and bad routing table entries to obtain a high 
average density. 

We also tried to combine checked iterative routing with 
the redundant routing technique that we described be- 
fore. We used checked iterative routing for the neigh- 
bor set anycast messages in the hope that the improved 
success probability for the iterative routes would result 
in an improvement over redundant routing with recur- 
sive routes. But there was no visible improvement, most 
likely because the iterative routes are less independent 
than the recursive routes. We conclude that the routing 
failure test combined with redundant routing is the most 
effective solution for implementing secure routing. 

6 Self-certifying data 

The secure routing primitive adds significant overhead 
over conventional routing. In this section, we describe 
how the use of secure routing can be minimized by using 
self-certifying data. 

The reliance on secure routing can be reduced by stor- 
ing self-certifying data in the overlay, i.e., data whose 
integrity can be verified by the client. This allows clients 
to use efficient routing to request a copy of an object. 
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If a client receives a copy of the object, it can check 
its integrity and resort to secure routing only when the 
integrity check fails or there was no response within a 
timeout period. 

Self-certifying data does not help when inserting new ob- 
jects in the overlay or when verifying that an object is not 
stored in the overlay. In these cases, we use the secure 
routing primitive to ensure that all correct replica roots 
are reached. Similarly, node joining requires secure rout- 
ing. Nevertheless, self-certifying data can eliminate the 
overhead of secure routing in common cases. 

Self-certifying data has been used in several systems. For 
example, CFS [7] uses a cryptographic hash of a file's 
contents as the key during insertion and lookup of the 
file, and PAST [18] inserts signed files into the overlay. 

The technique can be extended to support mutable ob- 
jects with strong consistency guarantees. One can use a 
system like PAST to store self-certifying group descrip- 
tors that identify the set of hosts responsible for replicat- 
ing the object. Group descriptors can be used as follows. 
At object creation time, the owner of the object uses se- 
cure routing to insert a group descriptor into the over- 
lay under a key that identifies the object. The descriptor 
contains the public keys and IP addresses of the object's 
replica holders and it is signed by the owner. 

The replica group can run a Byzantine-fault-tolerant 
replication algorithm like BFr  [4] and the initial group 
membership is the set of replica roots associated with 
the key. In this setting, read and write operations can be 
performed as follows: the client uses efficient routing to 
retrieve a group descriptor from the overlay and checks 
the descriptor's signature; if correct, it uses the informa- 
tion in the descriptor to authenticate the replica holders 
and to invoke a replicated operation. If the client fails 
to retrieve a valid descriptor or if it fails to authenticate 
the replica holders, it uses the secure routing primitive to 
obtain a correct group descriptor or to assert that the ob- 
ject does not exist. This procedure provides strong con- 
sistency guarantees (linearizability [11]) for reads and 
writes while avoiding the routing failure test in the com- 
mon case. 

Changing the membership of the group that is respon- 
sible for replicating an object is not trivial; it requires 
securely inserting a new group descriptor in the overlay 
and ensuring that clients can reliably detect stale group 
descriptors. The following technique allows groups to 
change membership while retaining strong consistency 
guarantees. Each group of hosts that stores replicas of 
a given object maintains a private/public key pair as- 
sociated with the group. When the group membership 
changes, each host in the new membership generates a 
new key pair for the group, the hosts in the old mem- 
bership use their old keys to sign a new group descriptor 
containing the new keys, and then delete the old keys. 

If this operation is performed by a quorum of replica 
holders before the bound on the number of faulty group 
members is exceeded [4], old replica holders that fail 
will not be able to collude to pretend they are the current 
group because they cannot form the quorum necessary to 
authenticate themselves to a client. 

Group descriptors can be authenticated by following a 
signature chain that starts with an owner signature and 
has signatures of a quorum of replicas for each subse- 
quent membership change. The chain can be shortened 
by a new signature from the owner or, alternatively, repli- 
cas can use proactive signature sharing [12] to avoid the 
need for chaining signatures. 

7 R e l a t e d  w o r k  

Sit and Morris [19] present a framework for perform- 
ing security analyses of p2p networks. Their adversarial 
model allows for nodes to generate packets with arbi- 
trary contents, but assumes that nodes cannot intercept 
arbitrary traffic. They then present a taxonomy of pos- 
sible attacks. At the routing layer, they identify node 
lookup, routing table maintenance, and network parti- 
tioning / virtualization as security risks. They also dis- 
cuss issues in higher-level protocols, such as file storage, 
where nodes may not necessarily maintain the necessary 
invariants, such as storage replication. Finally, they dis- 
cuss various classes of denial-of-service attacks, includ- 
ing rapidly joining and leaving the network, or arranging 
for other nodes to send bulk volumes of data to overload 
a victim's network connection (i.e., distributed denial of 
service attacks). 

Dingledine et al. [9] and Douceur [10] discuss address 
spoofing attacks. With a large number of potentially ma- 
licious nodes in the system and without a trusted central 
authority to certify node identities, it becomes very dif- 
ficult to know whether you can trust the claimed identity 
of somebody to whom you have never before commu- 
nicated. Dingledine proposes to address this with vari- 
ous schemes, including the use of micro-cash, that allow 
nodes to build up reputations. 

Bellovin [2] identifies a number of issues with Napster 
and Gnutella. He discusses how difficult it might be to 
limit Napster and Gnutella use via firewalls, and how 
they can leak information that users might consider pri- 
vate, such as the search queries they issue to the network. 
Bellovin also expresses concern over Gnutella's "push" 
feature, intended to work around firewalls, which might 
be useful for distributed denial of service attacks. He 
considers Napster's centralized architecture to be more 
secure against such attacks, although it requires all users 
to trust the central server. 

It is worthwhile mentioning a very elegant alternative so- 
lution for secure routing table maintenance and forward- 
ing that we rejected. This solution replaces each node 
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by a group of diverse replicas as suggested by Lynch et 
al. [14]. The replicas are coordinated using a state ma- 
chine replication algorithm like BFT [4] that can tolerate 
Byzantine faults. BFT can replicate arbitrary state ma- 
chines and, therefore, it can replicate Pastry's routing ta- 
ble maintenance and forwarding protocols. Additionally, 
the algorithm in [14] provides strong consistency guar- 
antees for overlay routing and maintenance. 

However, there are two disadvantages: the solution is ex- 
pensive even without faults, and it is less resilient than 
the solution that we propose. Each routing step is expen- 
sive because it requires an agreement protocol between 
the replicas. Since the replicas should be geographically 
dispersed to reduce the probability of correlated faults, 
agreement latency will be high. Additionally, each group 
of replicas must have less than 1/3 of its nodes faulty. 
This bound on the number of faulty replicas per group re- 
suits in a relatively low probability of successful routing. 
The probability that a replica group with r replicas is cor- 
rect when a fraction f of the nodes in the Pastry overlay 

is compromised is X' [r/3] binom(i; r , f ) ,  where binom de- z-,i=0 
notes the binomial distribution with i successes, r trials, 
and probability of success f .  For example, the probabil- 
ity that a replica group is correct with 20% of the nodes 
compromised and 32 replicas is less than 93%. In this ex- 
ample, the probability of routing correctly with 100,000 
nodes in the overlay is only 72%. 

8 Conclusions 

Structured peer-to-peer overlay networks have previ- 
ously assumed a fail-stop model for nodes; any node ac- 
cessible in the network was assumed to correctly follow 
the protocol. However, if nodes are malicious and con- 
spire with each other, it is possible for a small number 
of nodes to compromise the overlay and the applications 
built upon it. This paper has presented the design and 
analysis of techniques for secure node joining, routing 
table maintenance, and message forwarding in structured 
p2p overlays. These techniques provide secure routing, 
which can be combined with existing techniques to con- 
struct applications that are robust in the presence of ma- 
licious participants. A routing failure test allows the 
use of efficient proximity-aware routing in the common 
case, resorting to the more costly redundant routing tech- 
nique only when the test indicates possible interference 
by an attacker. Moreover, we show how the use of secure 
routing can be reduced by using self-certifying applica- 
tion data. These techniques allow us to tolerate up to 
25% malicious nodes while providing good performance 
when the fraction of compromised nodes is small. 
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Appendix 
This appendix describes an analytic model for the probability 
of false positives and negatives in the routing failure test. 

We assume that there exist N nodeIds distributed uniformly at 
random on an interval of length D = 2 t28. If N is large and 
we look at the K nodeIds closest to an arbitrarily chosen loca- 
tion on this interval (for some K << N), the location of these 
K nodeIds is well approximated in distribution by a Poisson 
process of rate N/D. In particular, the inter-point distances are 
approximately independent exponential random variables with 
mean DIN. 

Let Ft denote the exponential distribution with mean Pl = D/N 
and /~ the exponential distribution with mean P2 = D/Nf ,  
where f is the fraction of faulty nodes. Suppose Yl,---,Y~ 
are independent identically distributed (iid) and are drawn from 
one of these two distributions and we are required to identify 
which distribution they are drawn from, e.g., Yt,. .-  ,Yk can be 
a prospective set of replica roots in Pastry and we are trying to 
determine if the set is correct or if it contains only faulty nodes. 
An optimal hypothesis test is based on comparing the likeli- 
hood ratio to a threshold; by writing down the likelihood ratio, 
we see that this is equivalent to comparing the sample mean, 
denoted py, to a threshold T. 

We are in a situation where N is unknown but we have samples 
Xl, . . .  ,xn from F1 (i.e., the samples that we collect from the 
nodeIds close to the sender in the id space). We propose the 
following hypothesis test: choose a threshold of the form Ypx, 
for some constant y E (1, I / f ) ,  and accept/reject the hypothesis 
that Yi are iid F1 by comparing ~y to this threshold. We now 
compute the false positive probability, c~, and the false negative 
probability, [3, for this test. 

Denote n/k by r and assume without loss of generality that r is 
an integer. For i = 1,... ,k, define 

Y Zi = Y i -  r (X(i-1)r+t +. . .  + Xir), 

and note that the Zi are iid random variables. Let Sj denote 
the sum of j lid exponential random variables with mean tq = 
DIN. The event that/.ty k > YPx is then the event that Zi=~ Zi > O. 

Thus, 

o t ( n , k , y ) = P t ( ~ Z i > O ) = P (  Sk> S,,), (1) 
K i - i  

where we write P1 to denote probabilities when the Yi have dis- 
tribution F1. Recalling that Sj has the gamma distribution with 
shape parameter j and scale parameter 1//-tl, we can rewrite the 
above as 

ct(n,k,y) = f ~  (x/pt)n-le-mX f ~  (x/gt)k-1- 
Jo i l l ( n - l ) !  J~ f i t ( k - l ) !  e-p~ydydx 

nnk%-n-k un-l e-n(u-t) vk-i e-k(v-1) 
- ( n - - ~ ] ) ! f 0  ~ ( n - t ) ,  £ f  ( k - l ) '  dvdu 

where we used the change of variables u = x/(npl) and v = 
y/(kpl ) to obtain the last equality. This expression can be used 
to compute o~ numerically. 

We now derive a simple closed-form expression for an upper 
bound on oz. The bound shows that c~ decays exponentially 
in the sample size, k, and in fact captures the exact exponential 
rate of decay. For arbitrary 0 _> 0, we have by Chernoff's bound 
that 

0~ < E[exp(0 ~ Z i ) ]  = (E[e°rq)  E[exp( -  Xt)] 
i=l 

Now, if X has an exponential distribution with mean p, then 
E[e °x] is 1/(1 - 0 p )  for 0 < 1/p and + ~  for 0 > 1/p. Thus, 
for all 0 E [0, 1//.11 ), we have 

log c~ _< - k  log(1 - Opt ) - rk log( 1 + Y0p---L ) 
r 

The tightest upper bound is obtained by minimising the expres- 
sion on the right over 0 E [0, 1/pt).  The minimum is attained 

r v-1 Substituting this above yields the bound, at 0 = r+--'T Yp-----7" 

c~ < exp - k  ( r +  l ) log r + l - -  logy (2) 

We can derive an expression for the false negative probability, 
[3, along similar lines. Now, the Y/are lid with distribution F2, 
i.e., they are exponentially distributed with mean Pe = Pt I f ,  
and we are interested in the event that pr  < ~/Px- If this hap- 
pens, then we fail to reject the hypothesis that the I~ have dis- 
tribution F1. Thus 

k 
[3(n,k,Y,f) = P2( E Zi_< O), 

i=l 

where we write *02 to denote probabilities when the Yi are 
exponential with mean P l / f .  In this case, Yt has the same 
distribution as X1/f,  so ~/k=l I~ has the same distribution as 

(~/k= t Xi)/ f ,  and we obtain using (1) that 

1S~ Y 2 p(~sn2 1 1 1 =o~(k,n, 1 [3(n,k,y,f) = P ( k 7  < nSn)= .- > ~ -~Sk) ~-f) 

This allows us to compute [3 numerically and by combining 
this with (2), we obtain the following closed-form upper bound 
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